Property of servantboy.com

KINEMATICS AND DYNAMICS

Question 1
A body weighing 80 N stands in an elevator that is about to move. The force exerted by the floor on the body as the elevator moves upward with an acceleration of $5 \mathrm{~ms}^{-1} \quad\{2002\}$
A. 40 N
B. 80 N
C. 120 N
D. 160 N

Solution
The floor will exert an upward floor while the body will exert a downward force (since weight is always directed toward the centre of the earth).
$\mathrm{Mg}=80$
$\mathrm{M}=\frac{80}{g}$
$M=8 \mathrm{~kg}$
$\mathrm{T}-\mathrm{mg}=\mathrm{ma}$
$T-80=40$
$\mathrm{T}=40+80$
$\mathrm{T}=120 \mathrm{~N}$
C is the correct option

Question 2

If an object just begins to slide on a surface inclined at 30° to the horizontal, the coefficient of friction is
A. $\sqrt{3}$
B. $\frac{\sqrt{3}}{2}$
C. $\frac{1}{\sqrt{2}}$
D. $\frac{1}{\sqrt{3}}$
\{2003\}
Solution

$$
\begin{gathered}
\mu=\tan \theta \\
\mu=\text { coefficient of friction } \\
\mu=\tan 30
\end{gathered}
$$

$$
\mu=\frac{1}{\sqrt{3}}
$$

D is the correct option

Question 3

A force of 100 N is used to kick a football of mass 0.8 kg . Find the velocity with which the ball moves if it takes 0.8 s to be kicked. $\{2003\}$
A. $32 \mathrm{~ms}^{-1}$
B. $50 \mathrm{~ms}^{-1}$
C. $64 \mathrm{~ms}^{-1}$
D. $100 \mathrm{~ms}^{-1}$

Solution
Net force = rate of change of momentum

$$
\begin{aligned}
f & =\frac{m(v-u)}{t} \\
100 & =\frac{0.8(v-0)}{0.8}
\end{aligned}
$$

$V=100 \mathrm{~ms}^{-1}$
D is the correct answer

Question 4

A 100 kg box is pushed along a road with a force of 500 N . If the box moves with a uniform velocity, the coefficient of friction between the box and the road is\{2004\}
A. 0.5
B. 0.4
C. 1.0
D. 0.8

Solution
Since the box moved with a uniform velocity, it implies no net force
i.e.

$$
\begin{gathered}
f-\mu m g=0 \\
\mu=\frac{f}{m g} \\
\mu=\frac{500}{100 \times 10} \\
\mu=0.5
\end{gathered}
$$

A is the correct answer

Question 5

A motorcyclist traveling at $30 \mathrm{~ms}^{-1}$ starts to apply his brakes when he is 50 m from the traffic light that had just turned red. If he reached the traffic light, his deceleration is\{2005\}
A. $18 \mathrm{~ms}^{-2}$
B. $10 \mathrm{~ms}^{-2}$
C. $9 \mathrm{~ms}^{-2}$
D. $5 \mathrm{~ms}^{-2}$

Solution

Out of the Newton's equations of motion, the most appropriate equation for the above question is the equation below
$U=30, v=0, s=50$

$$
v^{2}=u^{2}+2 a s
$$

$$
0^{2}=30^{2}+2 a \times 50
$$

$0=900+100 a$

$$
\begin{gathered}
a=-\frac{900}{100} \\
a=-9 m s^{-2}
\end{gathered}
$$

The negative sign shows it is decelerating
C is the correct option

Question 6

An object is projected from a ground with a velocity of $40 \mathrm{~ms}^{-1}$ at an angle of 30° to the horizontal. The time of flight is
A. 16 s
B. 10 s
C. 8s
D. 4 s
[$\mathrm{g}=10 \mathrm{~ms}^{-2}$]
Solution

$$
T=\frac{2 u \sin \theta}{g}
$$

T is the time of flight

$$
T=\frac{2 \times 40 \times \sin 30}{10}
$$

$\mathrm{T}=4 \mathrm{~s}$
D is the correct answer
Question 7
Rough surface
Smooth pulley

In the figure above, the coefficient of static friction is 0.5 . If the tension in the string is T, the acceleration of the system in motion is \{2005\}
A. $3 \mathrm{~ms}^{-2}$
B. $5 \mathrm{~ms}^{-2}$
C. $9 \mathrm{~ms}^{-2}$
D. $15 \mathrm{~ms}^{-2}$
[$\mathrm{g}=10 \mathrm{~ms}^{-2}$]
Solution

Let

$$
\begin{gathered}
m_{1}=3 \mathrm{~kg} \\
m_{2}=6 \mathrm{~kg} \\
m_{2} g-\mu m_{1} g=\left(m_{1}+m_{2}\right) a
\end{gathered}
$$

$$
6 g-0.5 \times 3 g=(3+6) a
$$

$4.5 \mathrm{~g}=9 \mathrm{a}$

$$
\begin{gathered}
a=\frac{4.5 \times 10}{9} \\
a=5 m s^{-2}
\end{gathered}
$$

B is the correct option
Question 8
What is the acceleration between two points on a velocity-time graph which has coordinates ($10 \mathrm{~s}, 15 \mathrm{~m}$
s^{-1}) and (20s, $35 \mathrm{~m} \mathrm{~s}^{-1}$)? \{2009\}
A. $1.75 \mathrm{~ms}^{-2}$
B. $3.50 \mathrm{~ms}^{-2}$
C. $1.00 \mathrm{~ms}^{-2}$
D. $2.00 \mathrm{~ms}^{-2}$
Solution

$$
\begin{gathered}
a=\frac{v_{2}-v_{1}}{t_{2}-t_{1}} \\
a=\frac{35-15}{20-10} \\
a=\frac{20}{10} \\
a=2 \mathrm{~ms}^{-2}
\end{gathered}
$$

D is the correct option
Question 9
A car accelerates uniformly from rest at $4 \mathrm{~ms}^{-2}$. How far will it travel in the fifth complete second? $\{2009\}$
A. 100 m
B. 50 m
C. 32 m
D. 18 m

Solution

$$
s=\frac{1}{2} a t^{2}
$$

First calculate the distance covered in 5 s and 4 s
In 5s,

$$
s=\frac{1}{2} \times 4 \times 5^{2}=50 \mathrm{~m}
$$

$\ln 4 s$

$$
s=\frac{1}{2} \times 4 \times 4^{2}=32 m
$$

In fifth seconds =50-32=18m
D is the correct option
Question 10
A body of mass 12 kg travelling at $4.2 \mathrm{~ms}^{-1}$ collides with a second body of mass 18 kg at rest. Calculate their common velocity if the two bodies coalesce after collision. \{2009\}
A. $1.5 \mathrm{~ms}^{-1}$
B. $1.4 \mathrm{~ms}^{-1}$
C. $2.1 \mathrm{~ms}^{-1}$
D. $1.7 \mathrm{~ms}^{-1}$

Solution

$$
\begin{gathered}
m_{1} u_{1}-m_{2} u_{2}=\left(m_{1}+m_{2}\right) v \\
12 \times 4.2-18 \times 0=(12+18) v \\
50.4=30 v
\end{gathered}
$$

$$
\begin{gathered}
v=\frac{50.4}{30} \\
v=1.7 m s^{-1}
\end{gathered}
$$

D is the correct option
Question 11
A bullet fired vertically upward from a gun held 2.0 m above the ground reaches its maximum height in 4.0 s. calculate its initial velocity. \{2009\}
A. $10 \mathrm{~ms}^{-1}$
B. $8 \mathrm{~ms}^{-1}$
C. $40 \mathrm{~ms}^{-1}$
D. $20 \mathrm{~ms}^{-1}$
$\left[\mathrm{g}=10 \mathrm{~ms}^{-2}\right.$]
Solution

$$
\begin{gathered}
v=u-a t \\
0=u-10 \times 4 \\
u=40 \mathrm{~ms}^{-1}
\end{gathered}
$$

C is the correct option

Question 12

An object of mass 80 kg is pulled on a horizontal rough ground by a force of 500 N . Find the coefficient of static friction. \{2009\}
A. 0.8
B. 0.4
C. 1.0
D. 0.6
$\left[\mathrm{g}=10 \mathrm{~ms}^{-2}\right.$]
Solution

$$
\begin{gathered}
\mu=\frac{F}{m g} \\
\mu=\frac{500}{80 \times 10} \\
\mu=0.6
\end{gathered}
$$

D is the correct option

Question 13

Two cars moving in the same direction have speeds of $100 \mathrm{kmh}^{-1}$ and $130 \mathrm{kmh}^{-1}$. What is the velocity of the faster car as measured by an observer in the slower car? \{2010\}
A. $130 \mathrm{kmh}^{-1}$
B. $230 \mathrm{kmh}^{-1}$
C. $200 \mathrm{kmh}^{-1}$
D. $30 \mathrm{kmh}^{-1}$

Solution
You are to calculate the relative speed

$$
u_{2}-u_{1}=130-100=30 \mathrm{kmh}^{-1}
$$

D is the correct option

Question 14

A car moves with an initial velocity of $25 \mathrm{~ms}^{-1}$ and reaches a velocity of $45 \mathrm{~ms}^{-1}$ in 10 s . What is the acceleration of the car?\{2010\}
A. $5 \mathrm{~ms}^{-1}$
B. $25 \mathrm{~ms}^{-1}$
C. $20 \mathrm{~ms}^{-1}$
D. $2 \mathrm{~ms}^{-1}$

Solution

$$
\begin{gathered}
v=u+a t \\
45=25+10 a \\
10 a=20 \\
a=2 m s^{-2}
\end{gathered}
$$

D is the correct option

Question 15

Two balls X and Y weighing $5 g$ and 50 kg respectively were thrown up vertically at the same time with a velocity of $100 \mathrm{~ms}^{-1}$. How will their positions be one second later? \{2011\}
A. X and Y will both be 500 m from
the point of throw
B. X and Y will be 500 m from each
other
C. Y will be 500 m ahead of X
D. X will be 500 m ahead of Y.

Solution

The distance covered after one second

Question 5

$$
\begin{gathered}
v^{2}=u^{2}-2 a s \\
0^{2}=100^{2}-2 \times 10 \times s \\
s=\frac{10000}{20}
\end{gathered}
$$

$\mathrm{S}=500 \mathrm{~m}$
The position the two balls will be from the point of throw is independent on their mass.
A is the correct option

Question 16
If it takes an object 3 s to fall freely to the ground from a certain height, what is the distance covered by the object?
A. 60 m
B. 90 m
C. 30 m
D. 45 m . [$\mathrm{g}=10 \mathrm{~ms}^{-2}$]
Solution

$$
s=u t+\frac{1}{2} a t^{2}
$$

Initial velocity = 0

$$
s=0 \times 3+\frac{1}{2} \times 10 \times 3^{2}
$$

$S=45 m$

D is the correct option

Question 17

Calculate the total distance covered by a train before coming to rest if its initial speed is $30 \mathrm{~ms}^{-1}$ with a constant retardation of $0.1 \mathrm{~ms}^{-2}$. $\{2012\}$
A. 5500 m
B. 4500 m
C. 4200 m
D. 3000 m .

Solution

$$
v^{2}=u^{2}+2 a s
$$

$V=0$
$\mathrm{U}=30 \mathrm{~ms}^{-1}$
$\mathrm{a}=-0.1 \mathrm{~ms}^{-2}$
The a is negative because the motion is retarding i.e. deceleration

$$
\begin{gathered}
0^{2}=30^{2}+2 \times-0.1 \times s \\
-0.2 s=-900 \\
s=\frac{-900}{-0.2}
\end{gathered}
$$

$\mathrm{S}=4500 \mathrm{~m}$
B is the correct option

Question 18
A car starts from rest and moves with a uniform acceleration of $30 \mathrm{~ms}^{-2}$ for 20 s . Calculate the distance covered at the end of the motion. $\{2012\}$
A. 6 km
B. 12 km
C. 18 km
D. 24 km .

Solution

$$
\begin{gathered}
s=\frac{1}{2} a t^{2} \\
s=\frac{1}{2} \times 30 \times 20^{2}
\end{gathered}
$$

$S=6000 \mathrm{~m}=6 \mathrm{~km}$
A is the correct option

Question 19
An object of mass 20 kg slides down an inclined plane at an angle of 30° to the horizontal. The coefficient of static friction is $\{2012\}$
A. 0.2
B. 0.3
C. 0.5
D. 0.6
$\left[\mathrm{g}=10 \mathrm{~ms}^{-2}\right]$

Solution

$$
\mu=\tan \theta
$$

$$
\begin{gathered}
\mu=\text { coefficient of friction } \\
\mu=\tan 30 \\
\mu=0.577=0.6
\end{gathered}
$$

D is the correct answer

Question 20

A train with an initial velocity of $20 \mathrm{~ms}^{-1}$ is subjected to a uniform deceleration of $2 \mathrm{~ms}^{-2}$. The time required to bring the train to a complete halt is
A. 40s
B. 5 s
C. 10 s
D. 20 s
Solution

$$
v=u+a t
$$

$V=0$
$U=20$
$a=-2$

$$
\begin{gathered}
0=20-2 t \\
t=\frac{20}{2} \\
t=10 s
\end{gathered}
$$

C is the correct option
Question 21
Calculate the apparent weight loss of a man weighing 70 kg in an elevator moving downwards with an acceleration of $1.5 \mathrm{~ms}^{-2}$. \{2013\}
A. 105 N
B. 686 N
C. 595 N
D. 581 N

Solution

The apparent weight loss $=\mathrm{ma}=70 * 1.5=105 \mathrm{~N}$
A is the correct option

Question 22
The coefficient of friction between two perfectly smooth surface is $\{2013\}$
A. Zero
B. Infinity
C. One
D. Half
Solution

The coefficient of friction between two perfectly smooth surface is zero
A is the correct option

CIRCULAR MOTION: PERIODIC MOTION

Question 1

A particle in circular motion performs 30 oscillations in 6 seconds. Its angular velocity is $\{2002\}$
A. 5 rad s $^{-1}$
B. 6 rad s-1
C. $5 \pi \mathrm{rad} \mathrm{s}^{-1}$
D. $10 \pi \mathrm{rad} \mathrm{s}^{-1}$
Solution

$$
\begin{gathered}
\omega=2 \pi f \\
\omega=2 \pi \times \frac{30}{6} \\
\omega=10 \pi \mathrm{rads}^{-1}
\end{gathered}
$$

D is the correct answer

Question 2

A car of mass 1500 kg goes round a circular curve of radius 50 m at a speed of $40 \mathrm{~ms}^{-1}$. The magnitude of the centripetal force on the car is $\{2007\}$
A. $1.2 \times 10^{2} \mathrm{~N}$
B. $1.2 \times 10^{3} \mathrm{~N}$
C. $4.8 \times 10^{3} \mathrm{~N}$
D. $4.8 \times 10^{4} \mathrm{~N}$

Solution

$$
\begin{gathered}
f=m \omega^{2} r=m \frac{v^{2}}{r} \\
f=1500 \times \frac{40^{2}}{50} \\
f=48000 N \\
f=4.8 \times 10^{4} N
\end{gathered}
$$

D is the correct option

Question 3

A force F is required to keep a 5 kg mass moving round a cycle of radius 3.5 m at a speed of $7 \mathrm{~ms}^{-1}$. What is the speed, if the force is tripled? $\{2008\}$
A. $4.0 \mathrm{~ms}^{-1}$
B. $6.6 \mathrm{~ms}^{-1}$
C. $12.1 \mathrm{~ms}^{-1}$
D. $21.0 \mathrm{~ms}^{-1}$
Solution

$$
f=m \frac{v^{2}}{r}
$$

Keeping the mass and the radius of the ball constant, since the same ball is being used

$$
\frac{f}{v^{2}}=\frac{m}{r}
$$

So the relation will now be,

$$
\frac{f_{1}}{v_{1}{ }^{2}}=\frac{f_{2}}{v_{2}{ }^{2}}
$$

From the question,

$$
f_{2}=3 f_{1}
$$

Substitute

$$
\begin{gathered}
\frac{f_{1}}{7^{2}}=\frac{3 f_{1}}{v_{2}{ }^{2}} \\
v_{2}^{2}=49 \times 3 \\
v_{2}^{2}=147
\end{gathered}
$$

Find the square root of both sides

$$
v_{2}=12.1 \mathrm{~ms}^{-1}
$$

C is the correct option

Question 4

If a wheel 1.2 m in a diameter rotates at one revolution per second, calculate the velocity of the wheel.\{2008\}
A. $3.6 \mathrm{~ms}^{-1}$
B. $3.8 \mathrm{~ms}^{-1}$
C. $4.0 \mathrm{~ms}^{-1}$
D. $7.5 \mathrm{~ms}^{-1}$
Solution

Frequency = one revolution per second, since frequency is number of oscillation per unit time.

$$
\omega=2 \pi f
$$

$$
\begin{aligned}
& \omega=2 \times 3.142 \times 1=6.284 \mathrm{rads}^{-1} \\
& v=\omega r \\
& \text { radius }=\frac{\text { diameter }}{2}=\frac{1.2}{2}=0.6 \mathrm{~m} \\
& v=6.284 \times 0.6=3.77=3.8 \mathrm{~ms}^{-1}
\end{aligned}
$$

B is the correct answer

Question 5

What is the frequency of vibration if the balance wheel of a wristwatch makes 90 revolutions in 25s?\{2008\}
A. 0.01 Hz
B. 0.04 Hz
C. 2.27 Hz
D. 3.60 Hz
Solution

$$
\text { frequency }=\frac{\text { no of oscillation }}{\text { unit time }}=\frac{90}{25}=3.6 \mathrm{~Hz}
$$

D is the correct option

Question 6

An object of mass 2 kg moves with a velocity of $10 \mathrm{~ms}^{-1}$ round a circle of radius 4 m . Calculate the centripetal force on the object. \{2011\}
A. 40 N
B. 25 N
C. 100 N
D. 50 N
Solution

$$
\begin{gathered}
f=m \frac{v^{2}}{r} \\
f=2 \times \frac{10^{2}}{50} \\
f=40 N
\end{gathered}
$$

A is the correct option

Question 7

An object moves in a circular path of radius 0.5 m with a speed of $1 \mathrm{~ms}^{-1}$. What is its angular velocity?\{2012\}
A. $8 \mathrm{rads}^{-1}$
B. $4 \mathrm{rads}^{-1}$
C. $2 \mathrm{rads}^{-1}$
D. $1 \mathrm{rads}^{-1}$

Solution

$$
\begin{aligned}
\omega & =\frac{v}{r} \\
\omega=\frac{1}{0.5} & =2 \text { rads }^{-1}
\end{aligned}
$$

C is the correct option

Question 8

A simple pendulum of length 0.4 m has a period 2 s . What is the period of a similar pendulum of length 0.8 m at the same place? $\{2013\}$
A. $\sqrt{2} s$
B. 8 s
C. 4 s
D. $2 \sqrt{2} s$

Solution

$$
T=2 \pi \sqrt{\frac{l}{g}}
$$

Since the question says similar pendulum, that implies 2π and g will be constant. Squaring the equation and making some arrangement,

$$
\frac{T^{2}}{l}=\frac{4 \pi^{2}}{g}
$$

Therefore,

$$
\frac{T_{1}{ }^{2}}{l_{1}}=\frac{T_{2}{ }^{2}}{l_{2}}
$$

$$
\frac{2^{2}}{0.4}=\frac{T_{2}{ }^{2}}{0.8}
$$

Cross multiply and make T_{2} the subject of the formula

$$
T_{2}{ }^{2}=8
$$

$$
T_{2}=2 \sqrt{2} S
$$

D is the correct answer

WORK, ENERGY AND POWER

Question 1

A bead traveling on a straight wire is brought to rest at 0.2 m by friction. If the mass of the bead is 0.01 kg and the coefficient of friction between the bead and the wire is 0.1 , determine the workdone by the friction. $\{2003\}$
A. $2 \times 10^{-4} \mathrm{~J}$
B. $2 \times 10^{-3} \mathrm{~J}$
C. $2 \times 10^{1} \mathrm{~J}$
D. $2 \times 10^{2} \mathrm{~J}$
[$\mathrm{g}=10 \mathrm{~ms}^{-2}$.]

Solution

$$
\begin{gathered}
f=\mu R \\
f=\text { frictional force }
\end{gathered}
$$

R is the normal reaction

$$
\begin{gathered}
f=0.1 \times 0.01 \times 10 \\
f=0.01 N
\end{gathered}
$$

$$
\text { workdone by friction }=f \times d
$$

$$
\text { workdone by friction }=0.01 \times 0.2=2 \times 10^{-3} \mathrm{~J}
$$

B is the correct answer

Question2

A body of mass 4 kg is acted on by a constant force of 12 N for 3 seconds. The kinetic energy gained by the body at the end of the time is $\{2004\}$
A. 162J
B. 144 J
C. 72J
D. 81 J

Solution

$$
\begin{gathered}
f=m a \\
12=4 a \\
a=\frac{12}{4} \\
a=3 m s^{-2} \\
s=\frac{1}{2} a t^{2} \\
s=\frac{1}{2} \times 3 \times 3^{2}=13.5 m
\end{gathered}
$$

Kinetic energy gained $=$ force x distance $=12 * 13.5=162 \mathrm{~J}$
A is the correct answer

Question 3

In the figure above, the work done by the force of 100 N inclined at an angle of 60° to the object dragged horizontally to a distance of 8 m is $\{2005\}$
A. 100J
B. 400J
C. 600J
D. 800 J

Solution

> workdone $=m g \sin \theta \times d$
> workdone $=100 \cos 60 \times 8$
> workdone $=100 \times 0.5 \times 8=400 \mathrm{~J}$
B is the correct option

Question 4
A boy drags a bag of rice along a smooth horizontal floor with a force of 2 N applied at an angle of 60° to the floor. The work done after a distance of 3 m is
A. 6 J
B. 5J
C. 4 J
D 3J

Solution

> workdone $=m g \sin \theta \times d$
> workdone $=2 \cos 60 \times 3$
> workdone $=2 \times 0.5 \times 3=3 \mathrm{~J}$

D is the correct option

Question 5

If a cage containing a truck of coal weighing 750 kg is raised to a height of 90 m in 1 minute, what is the total power expended?\{2009\}
A. 11.50 kW
B. 12.60 kW
C. 11.25 kW
D. 12.10 kw
[g • $10 \mathrm{~ms}^{-2}$]
Solution

$$
\begin{gathered}
\text { power }=\text { force } \times \text { velocity } \\
\text { power }=750 \times 10 \times \frac{90}{60} \\
\text { power }=11250 \mathrm{~W}=11.25 \mathrm{KW}
\end{gathered}
$$

C is the correct answer

Question 6

A bob of weight 0.1 N hangs from a massless string of length 50 cm . A variable horizontal force which increases from zero is applied to pull the bob until the string makes an angle of 60° with the vertical. The work done is $\{2010\}$
A. 0.250 J
B. 0.025J
C. 0.050 J
D. 0.500 J

Solution

The vertical distance $=0.5 \cos 60=0.25 \mathrm{~m}$
Workdone $=f \times d=0.1 \times 0.25=0.025 J$
B is the correct answer

Question 7

A carpenter on top of a roof $20 . \mathrm{m}$ high dropped a hammer of mass 1.5 kg and it fell freely to the ground. The kinetic energy of the hammer just before hitting the ground is $\{2011\}$
A. 450 J
B. 600 J
C. 150 J
D. 300 J
[$\mathrm{g}=10 \mathrm{~ms}^{-2}$]
Solution
$K . E=P . E$
Kinetic energy $=\mathrm{mgh}=1.5 * 20 * 10=300 \mathrm{~J}$
D is the correct option

Question 8

An object is moving with a velocity of $5 \mathrm{~ms}^{-1}$. At what height must a similar body be situated to have a potential energy equal in value with the kinetic energy of the moving body? \{2013\}
A. 1.0m
B. 25.0 m
C. 20.0 m
D. 1.3 m

Solution

$$
\begin{gathered}
m g h=\frac{1}{2} m v^{2} \\
h=\frac{1}{2 g} v^{2} \\
h=\frac{1}{2 \times 10} \times 5^{2} \\
h=1.25=1.3 \mathrm{~m}
\end{gathered}
$$

D is the correct option

Question 9
If a pump is capable of lifting 5000 kg of water through a vertical height of 60 m in 15 min , the power of the pump is $\{2013\}$
A. $3.3 \times 10^{2} \mathrm{Js}^{-1}$
B. $2.5 \times 10^{5} \mathrm{Js}^{-1}$
C. $2.5 \times 10^{4} \mathrm{Js}^{-1}$
D. $3.3 \times 10^{3} \mathrm{Js}^{-1}$

Solution
Power= energy expended per unit time

$$
\begin{gathered}
\text { power }=\frac{f \times h}{t}=\frac{m g h}{t} \\
\text { power }=\frac{5000 \times 10 \times 60}{60 \times 15}=3333.3 \mathrm{Js}^{-1}=3.3 \times 10^{3} \mathrm{Js}^{-1}
\end{gathered}
$$

MACHINE

Question 1

The diagram below is a block-and-tackle pulley system in which an effort of 80 N is used to lift a load of $240 N$. The efficiency of the machine is $\{2001\}$
A. 40\%
B. 33\%
C. 60%
D. 50\%.

Solution
Velocity ratio $=$ number of pulleys $=6$

$$
\begin{gathered}
M \cdot A=\frac{l o a d}{\text { effort }}=\frac{240}{80}=3 \\
\text { efficiency }=\frac{M \cdot A}{V \cdot R} \times 100=\frac{3}{6} \times 100=50 \%
\end{gathered}
$$

D is the correct answer

The earth is four times the size of the moon and the acceleration due to gravity on the earth is 80 times that on the moon. The ratio of the mass of the moon to that of the earth is(gravitational force 2004)
A. $1: 320$
B. $1: 1280$
C. $1: 80$
D. 1:4

Solution

size of earth $=4 x$ size of moon
G of erath $=80 \times \mathrm{g}$ of moon

A bead traveling on a straight wire is brought to rest at 0.2 m by friction. If the mass of the bead is 0.01 kg and the coefficient of friction between the bead and the wire is 0.1 , determine the workdone by the friction.
A. $2 \times 10^{-4} \mathrm{~J}$
B. $2 \times 10^{-3} \mathrm{~J}$
C. 2×10^{1} J
D. $2 \times 10^{2} \mathrm{~J}$
[$\mathrm{g}=10 \mathrm{~ms}-\mathrm{t}$.]

