CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the October/November 2015 series

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

P	age 2		Mark Scheme	Syllabus	Pape	
		(Cambridge International AS/A Level – October/November 2015	9702	22	
1	(a)	v =	fλ		C1	
		λ	$= (3.0 \times 10^8)/(4.6 \times 10^{20})$		C1	
		($= 6.52 \times 10^{-13} =) 0.65(2) \text{ pm}$		A1	[3]
	(b)	t =	$(8.5 \times 10^{16})/(3.0 \times 10^8)$		C1	
		(=	$2.83 \times 10^8 =) 0.28(3) \mathrm{Gs}$		A1	[2]
	(c)	ma	ss, power and temperature all underlined and no others		B1	[1]
	(d)	(i)	arrow in the direction 30° to 40° south of east		B1	[1]
		(ii)	triangle of velocities completed (i.e. correct scale diagram) or correct given e.g. $[14^2 + 8.0^2 - 2(14)(8.0) \cos 60^\circ]^{1/2}$ or $[(14 - 8.0 \cos 60^\circ)^2 + (8.0 \sin 60^\circ)^2]^{1/2}$	ct working	C1	
			resultant velocity = $12(.2)$ (or 12.0 to 12.4 from scale diagram) m s ⁻¹		A1	[2]
2	(a)	(i)	v = u + at		C1	
			0 = 3.6 - 3.0t			
			t (= 3.6/3.0) = 1.2s		A1	[2]
		(ii)	(distance to rest from P = $(3.6 \times 1.2)/2 = 2.2 \times (2.16)$ m		A1	[1]
			or $[0 - (3.6)^2]/[2 \times (-3.0)] = 2.2 (2.16) \text{ m}$ or			
			$3.6 \times 1.2 - \frac{1}{2} \times 3.0 \times (1.2)^2 = 2.2 (2.16) \text{ m}$			
			$0 + \frac{1}{2} \times 3.0 \times (1.2)^2 = 2.2 (2.16) \mathrm{m}$			
	(b)	dis	tance = 6.0 – 2.16 (= 3.84)		C1	
		v ² =	$= u^2 + 2as = 2 \times 3.0 \times 3.84 (= 23.04)$		M1	
		or				
		x +	$2 \times 2.16 = 6.0$ gives $x = 1.68$ (m)		(C1)	
		v ² =	$= 3.6^2 + 2 \times 1.68 \times 3.0 \ (= 23.04)$		(M1)	
		or	correct method with intermediate time calculated ($t = 1.6 \mathrm{s}$ from Q to	R)		
		v =	$4.8\mathrm{ms^{-1}}$		A0	[2]

Page 3			Mark Scheme Syllabus		Paper	
		(Cambridge International AS/A Level – October/November 2015	9702	22	
	(c) :	stra	sight line from $v = 3.6 \text{ m s}^{-1}$ to $v = 0$ at $t = 1.2 \text{ s}$		B1	
	;	stra	hight line continues with the same gradient as v changes sign		В1	
	;	stra	eight line from $v = 0$ intercept to $v = -4.8 \mathrm{m s^{-1}}$		B1	[3]
	(d) (diffe	erence in KE = $\frac{1}{2}m(v^2 - u^2)$ = 0.5 × 0.45 (4.8 ² – 3.6 ²) [= 5.184 – 2.916]		C1	
			= 2.3 (2.27) J		A1	[2]
3	(a)	(i)	k = F/x or 1/gradient		C1	
			$(k = 4.4/(5.4 \times 10^{-2}) =) 81 (81.48) \mathrm{N m^{-1}}$		A1	[2]
	(ii)	work done = area under line or $\frac{1}{2}Fx$ or $\frac{1}{2}kx^2$		C1	
			$(= 0.5 \times 4.4 \times 5.4 \times 10^{-2} =) 0.12 (0.119) J$		A1	[2]
	(b)	(i)	kinetic energy/ $E_{\rm k}$ of trolley/T (and block) changes to EPE/strain energy/elastic energy of spring		B1	
			EPE changes to KE of trolley/T and KE of block or to give lower KE	to trolley	B1	[2]
	(ii)	change in momentum = $m(v + u)$		C1	
			= 0.25 (0.75 + 1.2) = 0.49 (0.488)Ns		A1	[2]
4	(a)	pro	duct of the force and the perpendicular distance to/from a point/pivo	t	В1	[1]
	(b)	(i)	$4000 \times 2.8 \times \sin 30^\circ$ or $500 \times 1.4 \times \sin 30^\circ$ or $T \times 2.8$ or 4000×1.4 or 500×0.7		B1	
			$4000 \times 2.8 \times \sin 30^{\circ} + 500 \times 1.4 \times \sin 30^{\circ} = T \times 2.8$ hence $T = 2100 \ (2125) \text{N}$		M1 A0	[2]
	(ii)	$(T_v = 2100 \cos 60^\circ =) 1100 (1050) N$		A1	[1]
	(i	ii)	there is an upward (vertical component of) force at A		B1	
			upward force at A + T_v = sum of downward forces/weight+load/450	0 N	B1	[2]

Page 4			Mark Scheme Syllabus		Paper	
			Cambridge International AS/A Level – October/November 2015	9702	22	
5	(a) ((i)	I = V/R		C1	
			(= 240/1500 =) 0.16 A		A1	[2]
	(i	ii)	$I_2 = 0.40 - 0.16 \ (= 0.24)$		C1	
			0.24(350 + R) = 240			
			$R = 650 \Omega$		A1	[2]
	(ii	ii)	power = IV or I^2R or V^2/R		C1	
			ratio = $(84 \times 0.24)/(88 \times 0.16)$ or $[(0.24)^2 \times 350]/[(0.16)^2 \times 550]$ or $(84^2/350)/(88^2/550)$ or $20.16/14.08$			
			= 1.4(3)		A1	[2]
	(b) (/i\	p.d. across 350Ω resistor = 0.24×350			
	(D) ((1)	or p.d. across 550Ω resistor = 0.16×550		C1	
			V_{350} = 84 (V) and V_{550} = 88 (V) gives V_{AB} = 4.0 V or V_{950} = 152 (V) and V_R = 156 V gives V_{AB} = 4.0 V		A1	[2]
	(1	ii)	p.d. across R increases or potential at B increases or V_{350} decreas $V_{\rm AB}$ increases	es hence	B1	[1]
6	(a) i	inte	rnal resistance causes lost volts		B1	
	ŗ	p.d.	across lamp is less than 12V, power is less than 48W		B1	[2]
	(b) ((i)	greater lost volts or p.d. across cell/lamp reduced, less current in la	ımp	B1	[1]
	(1	ii)	p.d. across lamp/current in lamp decreases, hence resistance decr	eases	B1	[1]
7	(a) ((i)	3.2 mm		A1	[1]
	(i	ii)	20 mm		A1	[1]
	(b) ((i)	energy is transferred/propagated (through the water) or wave profile/wavefronts move (outwards from dipper) so progressive		B1	[1]
	(i	ii)	to produce waves with constant/zero phase difference/coherent wa	ves	B1	[1]

Page 5				Paper	
		Cambridge International AS/A Level – October/November 2015	9702	22	
(c)) ((i) path difference is λ		B1	
		water vibrates/oscillates with amplitude about $2\times3.2\text{mm}$		B1	[2]
	(i	ii) path difference is $\lambda/2$ so little/no motion/displacement/amplitude		B1	[1]
8 (a)		result: majority/most (of the α -particles) went straight through/were desmall angles	eviated by	M1	
		conclusion: <u>most</u> of the atom is (empty) space or size/volume of nuclesmall <u>compared with atom</u>	eus <u>very</u>	A1	
		result: a small proportion were deflected through large angles or >90° straight back	or came	M1	
		conclusion: the mass or majority of mass is in a (very) small charged volume/region/nucleus		A1	[4]
(b)) <i>f</i>	o = m/V		C1	
		mass of atom and mass of nucleus (approx.) equal stated or cancelle given e.g. 63u or $63\times1.66\times10^{-27}$	d or values	C1	
		ratio = $(r_A)^3/(r_N)^3$ = $(1.15 \times 10^{-10})^3/(1.4 \times 10^{-14})^3$			
	r	ratio = $(d_A)^3/(d_N)^3$ = $(2.3 \times 10^{-10})^3/(2.8 \times 10^{-14})^3$ = 5.5×10^{11}		A1	[3]